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Viscosity contrast effects on fingering formation in rotating Hele-Shaw flows
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The different finger morphologies that arise at the interface separating two immiscible fluids in a rotating
Hele-Shaw cell are studied numerically. The whole range of viscosity contrast is analyzed and a variety of
fingering patterns systematically introduced, including the case in which the inner fluid is less viscous than the
outer one. Our numerical results demonstrate that both the magnitude and the sign of the viscosity contrast
strongly affect the shape of the emerging fingers, and also their length distribution. We have also found that the
occurrence and location of pinch-off singularities are remarkably modified when the inner fluid is less viscous:
instead of generating an isolated detaching drop, a full finger is disconnected from the interface. Finally, we
have verified that the finger competition phenomena revealed by our simulations are correctly predicted by a
weakly nonlinear analysis of the pattern development, showing that such important finger competition dynam-
ics is already set at relatively early stages of interfacial evolution.
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I. INTRODUCTION

During the last few years one particular variation of the
classical viscous fingering problem [1] has attracted consid-
erable attention of both theorists [2—-16] and experimentalists
[3,8,16-18]: it refers to the study of pattern formation in
radial Hele-Shaw cells with rotation. In this “rotating” ver-
sion of the problem, a Hele-Shaw cell of gap spacing b turns
around an axis perpendicular to the plane of the flow with
constant angular velocity €} (Fig. 1). Inside the cell an ini-
tially circular droplet (radius R) of the more dense fluid 2 is
surrounded by an outer fluid 1. The densities and viscosities
of the fluids are denoted by p; and 7, respectively (j=1,2),
and between the fluids there exists a surface tension o. The
interfacial instability is driven by centrifugal forces leading
to the formation of visually striking patterns. Generally
speaking, these patterns present fingering structures in which
a central drop of the more dense fluid throws out attached
droplets, which themselves may form new droplets and fin-
gers. At the same time, the fingers of the outer fluid advance
toward the center of the cell. As a result a wealth of interest-
ing phenomena related to finger competition dynamics, fila-
ment thinning, and interface pinch-off are revealed.

Pattern formation in rotating Hele-Shaw systems has been
investigated during early, intermediate, and advanced stages
of interfacial evolution. The stability of the evolving inter-
face at early stages of pattern development has been studied
analytically by linear stability analysis [2-5]. Other theoret-
ical work examined key morphological aspects occuring at
intermediate flow regimes through perturbative weakly non-
linear approaches [6,7]. Fully nonlinear, advanced stages

*Email address: jme @df.ufpe.br
"Email address: feenric @ wisemail.weizmann.ac.il

1539-3755/2005/72(2)/026306(5)/$23.00

026306-1

PACS number(s): 47.54.+r, 47.20.Ma, 47.11.+j, 47.55.Dz

have been investigated by numerical simulations [8-11,16]
and experiments [3,8,16—18]. Finally, particular families of
exact solutions have also been found [12-16].

By employing Hele-Shaw equations with standard bound-
ary conditions to confined rotating flows, it is possible to
show [6,7] that the most important morphological features of
the emerging patterns can be properly described in terms of
two dimensionless parameters: the viscosity contrast (or the
dimensionless viscosity difference)

A= 2 771’ (1)
M+

and the effective surface tension coefficient

g
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which measures the ratio of capillary to centrifugal forces
[19]. Interestingly, the vast majority of theoretical
[2-6,8-16] and experimental [3,8,16—18] studies focus ex-
clusively on the case in which the inner fluid is more vis-
cous, in such a way that the viscosity contrast is usually

2= Q

FIG. 1. Sketch of a rotating Hele-Shaw cell.
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viewed as a positive quantity. In contrast, the situation in
which A is negative (inner fluid is less viscous but more
dense) has been much less explored in the literature [7].
Fluid combinations leading to a negative viscosity contrast
situation abound, and the patterns produced could possibly
result in the rising of new and interesting structures at fully
advanced stages. Nevertheless, preparing a circular initial
condition is not straightforward and may represent a chal-
lenge for experimentalists, because the circular interface can
be unstable when the inner fluid is initially introduced into
the cell.

Very recently, Gadélha and Miranda [7] have made impor-
tant analytical predictions about the role of A for finger dy-
namics in rotating cells, taking into account all allowed val-
ues for the viscosity contrast, including negative ones.
Considering the length variability as a measure of the finger
competition, it has been predicted that competition among
the fingering structures is dramatically modified as A varies:
increasingly larger values of the magnitude of A<0 (A
>() lead to enhanced competition among outward (inward)
fingers. It has been also predicted that competition is signifi-
cantly suppressed when A — 0. Regarding the role of B, it
has been found that, besides setting the typical number of
fingers formed at the onset of the instability, smaller values
of B lead to more appreciable differences in finger competi-
tion behavior when induced by changes in A. Although the
weakly nonlinear results of Ref. [7] are consistent with ex-
isting experimental and numerical investigations of the prob-
lem in both the high [3] and low [8] positive A limit, the
validity of their suggestive findings to fully nonlinear stages
and to all allowed values of —1 <A =< +1 is still unproved. In
particular, the morphological details of the different patterns
generated when A is varied, and their nonlinear dynamics
still need to be addressed.

In this work, we perform intensive numerical simulations
of the rotating Hele-Shaw problem, focusing on the impact
of the viscosity contrast on the morphology, pinch-off, and
dynamical behavior of the fluid-fluid interface. We examine
the variations in the pattern morphology due to changes in A
in both magnitude and sign, and identify the main differences
among them. We also check the interesting predictions of
Ref. [7] regarding finger competition dynamics.

II. NUMERICAL APPROACH AND GOVERNING
EQUATIONS

Our numerical study is based on the vortex sheet repre-
sentation for Hele-Shaw flow [20]. The fluid-fluid boundary
is described by a simple closed curve parametrized by ar-
clength s, where the evolution of the interface position
[dr(s,r)/dt]-fi=w(s,t)-fi is obtained by using Darcy’s law
for the two-dimensional velocity v in the bulk of the flow,
and the standard boundary conditions at the interface [2,3]:
(i) the pressure jump at the interface p,—p,=ok, where «
denotes the interface curvature and p; represents the hydro-
dynamic pressure; and (ii) the kinematic boundary condition
n-v,=1-v,, which refers to the continuity of the normal ve-
locity across the interface (i is the unit normal to the inter-
face).
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The moving boundary problem can then be written
uniquely in terms of the shape of the interface. The self-
consistent equation for the velocity w(s,7) of the interface
due to a vortex sheet is given by the Birkhoff integral for-
mula [20,21]

1
w(s,t)=—P

f ds’i X [r(s,t) = x(s,1)]
21

ren-rp o @

where P means a principal-value integral and Z is the unit
vector along the direction perpendicular to the cell. The func-
tion y(s,?) is the vorticity generated by the discontinuity of
the tangential velocity at the interface. The velocity intro-
duced in Eq. (3) is an average velocity of the interface de-
fined as w=(v,+v,)/2, where v, and v, are the two limiting
values (from both sides of the interface) of the solenoidal
part of the velocity at a given point. By rescaling lengths by
R and velocities by U=[b*R(p,—p;)Q]/[12(n,+ 1,)] it can
be shown that the vortex sheet strength (or vorticity) can be
conveniently written in a dimensionless form, in terms of the
parameters A and B, as [6,20]

v=2[AwW-§—rt -8+ Bd,k], 4)

where §=4d,r is the unit counterclockwise tangent vector
along the interface.

To obtain the evolution of the interface, Eq. (4) has to be
solved with w given by Eq. (3), yielding an integro-
differential equation for the vorticity. Once vy is known, Eq.
(3) is used again to obtain w, and then its normal component
is used to update the position of the interface. To solve these
equations numerically, we adapt a code originally developed
by Pauné, Siegel, and Casademunt [22,23] to study flow in
both circular and rectangular Hele-Shaw cells that removes
the stiffness produced by surface tension. Further details on
the implementation and quantitative validation of this nu-
merical scheme can be found in Refs. [6,24-27].

III. RESULTS AND DISCUSSION

Numerical simulations showing the effects of A and B on
the evolution of the patterns are shown in Fig. 2. The rows in
Fig. 2 are arranged according to B: top row (a)-(d) for B
=5.0 X 10~*; middle row (e)—(h) for B=10"%; and bottom row
(i)—(1) for B=1072. The columns are arranged according to
the values of viscosity contrast: A=—1 (a), (e), (i), A=-0.5
(b), (1), (), A=0 (c), (g), (k), and A=+1 (d), (h), (). For
clarity, only the final pattern and the boundary of the initially
circular droplet are shown. For the results presented in this
work, all numerical experiments begin with the same initial
state of a circle centered on the axis of rotation with a small
amount of random noise distributed in the first 50 azimuthal
modes. The numerical simulation are stopped when the
pinch-off process renders the simulation inaccurate.

We begin our analysis by describing general morphologi-
cal features of the patterns and the main distinctions among
them when the parameters A and B are changed. First, we
observe that the resulting patterns shown in Figs. 2(a), 2(e),
and 2(i) for negative viscosity contrast A=—1 present a series
of peculiar petal-like structures. The outward fingers are con-
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FIG. 2. Numerical experiments showing the development of typical fingering patterns in a rotating Hele-Shaw cell for four values of
viscosity contrast A=—1, —0.5, 0, and 1 as labeled, and three values of the surface tension parameter B=5.0X 10~* (top row), 107> (middle
row), and 1072 (bottom row). Only the border of the initial droplet (circular line) and the final pattern (in black) are shown.

siderably wider at the tips, and tend to pinch off at the bot-
tom, in a region near the rotation axis. It is clear that the
basic difference among these patterns is essentially the num-
ber of fingers, which is larger for smaller values of B.

For intermediate negative viscosity contrast A=—0.5 Figs.
2(b), 2(f), and 2(j), the position of pinch-off moves from a
region closer to the rotation axis toward the tip of the finger.
As we can see, increasing viscosity contrast can lead to a
pinch-off process at different points along the finger. The
fingers also became less wide and in general present a more
noticeable resemblance in their shapes. At this point, it is
important to recall that in all the plots depicted in Fig. 2 the
initial conditions have not been prepared in any way. It is the
dynamic influence of viscosity contrast which produces dif-
ferent length distribution and competition processes even for
negative viscosity contrasts. We also point out that, in con-
trast to the case in which A >0, our specific numerical pre-
dictions for negative viscosity contrasts have not yet been
subjected to experimental check.

Now we examine the case of viscosity-matched fluids,
and try to identify the characteristic interfacial behavior in
the ideal limit A — 0 [Figs. 2(c), 2(g), and 2(k)]. It is noticed
that for A=0 the outward fingers tend to stretch radially,

resulting in a fairly regular array of fingering structures pre-
senting bulbous ends. The development of thin filaments
connected to relatively large droplets which tend to pinch at
the end of the fingers is very clearly depicted in Figs. 2(g)
and 2(k). Note that in contrast to the case shown in Figs.
2(a), 2(e), and 2(i) for A=—1 and Figs. 2(b), 2(f), and 2(j) for
A=-0.5, droplet pinch-off now tends to occur far from the
rotation axis, near the tip of the elongated outward fingers.
This is in agreement with recent experiments performed in
rotating Hele-Shaw cells in the limit of very low A>0 and o
[8]. In fact, the general features characterizing tendency to-
ward pinch-off for A=0 and A=-0.5,—1 are quite different:
while the fingers have to stretch, and then pinch near the tips
when A=0, for negative A the fingers inflate as a whole and
pinch-off occurs near their bases, regardless of the fact that
the interface has not been stretched outward. So the mecha-
nisms (with and without stretching) and location of pinch-off
seem to depend significantly on the value and sign of A.
We proceed by discussing the most studied case A=+1.
In Figs. 2(d), 2(h), and 2(1) we observe branched, backbone
structures which are characterized by the fact that, for a
given B, the width of the fingers remain approximately con-
stant along their lengths. By comparing the patterns for vari-
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ous A in Fig. 2, it is evident that the characteristic width of
the fingers is also quite sensitive to changes in A. In contrast
to the case A=0, when A=+1 it is clear that the inner fluid
does not accumulate at the ends of the fingers, so that we see
no tendency toward “neck” pinch-off. It is also worth noting
the absence of pinching at the base of the fingers, as opposed
to what is verified in the case A=—1. On this basis, it seems
that pinch-off events are not systematically favored when A
=+1.

Now we turn our attention to the finger competition dy-
namics. Length variability of outward fingers is quite evident
in Figs. 2(a), 2(e), and 2(i) (A=-1) characterizing a strong
competition among them. Conversely, the inward moving
fingers of the outer fluid do not compete as much. This last
feature is more clearly illustrated in Figs. 2(a) and 2(e), (for
smaller values of B), where the tips of the inward penetrating
fingers delineate an approximately circular internal region
around the center of the pattern. It is also apparent that the
patterns generated for intermediate values of negative A(A
=-0.5) present less dramatic competition. On the other hand,
the most noteworthy fact in Figs. 2(c), 2(g), and 2(k), for the
zero viscosity case, is that there is basically no competition,
in the sense that the average lengths of inward and outward
fingers do not vary much. The fact that finger competition is
suppressed for low viscosity contrast is a very well known
fact for Hele-Shaw flow in rectangular geometry [20,28-31].
But for the rotating case, we specifically show that the situ-
ation A=0 establishes a sort of dividing point between two
different types of competition: inward finger and outward
finger competition. By inspecting Figs. 2(d), 2(h), and 2(1)
(A=1) one can easily see that finger variability is much more
intense among inward fingers which penetrate the inner fluid
pretty strongly, while, as indicated before, for negative vis-
cosity contrast the outward fingers have a much more vari-
able length. This is validated by noting that when A=1 the
shape of the internal part of fluid 2 is not circularly symmet-
ric, as opposed to the more rounded internal parts obtained
for A=0 and A=-0.5,-1. On the other hand, the typical
sizes of the structures moving outward do not change signifi-
cantly in Figs. 2(d), 2(h), and 2(1).

To illustrate these finger competition features in a more
quantitative fashion, in Fig. 3 we take the same physical
parameters used in Figs. 2(a), 2(c), and 2(d) for B=5.0
X 107* and plot the dimensionless radial coordinate (r/R) of
the finger tips for each finger (n) (n is an integer, and labels
the fingers) for A=(a)—1, (b) 0, and (c) 1. The filled (empty)
circles locate the radial positions of the outward (inward)
fingers. The finger competition features we have discussed
above, by visually inspecting the patterns shown in Fig. 2,
are strikingly confirmed by Fig. 3: A=—1 (1) leads to en-
hanced competition among outward (inward) fingers, and
finger competition is considerably suppressed when A=0. As
a matter of fact, one could say there is competition always in
the direction of less viscous fingering penetrating into more
viscous, regardless of whether they are going inward or out-
ward. This indicates that the competition among the emerg-
ing fingering structures is primarily determined by a
viscosity-driven mechanism in the nonlocal and nonlinear
terms of the dynamics, as is the case in the purely viscosity-
driven Saffman-Taylor instability [1].
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FIG. 3. Dimensioness radial coordinate r/R of the finger tip for
each finger n (n is an integer) at the interface, when B=5.0 X 107*
and A=(a)—1, (b) 0, and (c) 1. These data are taken from the pat-
terns obtained in Figs. 2(a), 2(c), and 2(d).

IV. CONCLUDING REMARKS

Our numerical results substantiate the analytical predic-
tions of Ref. [7], providing a convincing evidence of the
usefulness of their weakly nonlinear approach. The very
good agreement between our numerical results and the ana-
lytical findings of Ref. [7] indicates that finger competition is
already set at relatively early stages of interfacial evolution.
Moreover, our simulations reinforce the fact that the viscos-
ity contrast A plays a crucial role in determining the pattern
morphology, in the sense that changes in its magnitude and
sign result in fingering patterns presenting very different
typical lengths and widths. In particular, we have shown that
the patterns generated for negative viscosity contrast are very
distinct from those obtained when A = 0. Our numerical find-
ings also seem to indicate that A has a key role in the dy-
namics of interfacial singularities (pinch-off events) not only
as to whether this pinch-off would appear at finite or at infi-
nite time [16], but also in the similarly basic question of
what the eventual location of the pinching would be. Our
results show that the pinch-off position moves away from the
rotation axis for increasingly larger values of A. Given the
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fact that the analytical approach to this process is based on
the lubrication approximation [16], and that this fails when
A=-1, addressing this issue becomes an interesting open
theoretical question.

A possible extension of the current work is the investiga-
tion of the influence of magnetic forces on the morphological
properties of interfaces in rotating Hele-Shaw cells. This can
be done by assuming that the inner, more dense fluid is a
ferrofluid (or magnetic fluid) [32], and a magnetic field is
applied. Depending on the symmetry properties of the ap-
plied magnetic field (for instance, azimuthal [4,10] or per-
pendicular [33]) it can either stabilize or destabilize the in-
terface. Among other things, an external magnetic field could
be used to suppress the occurrence of interfacial singularities
[34]. It would be of interest to study how the magnetic field
couples to the parameters A and B, possibly leading to non-
trivial nonlinear behaviors and even more complex interfa-
cial morphologies. Another interesting variation of the cur-
rent immiscible situation would be to examine how finger
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competition dynamics and pinch-off events would be modi-
fied if the confined rotating fluids were miscible [9,11]. Mis-
cible fluids present negligible interfacial tension, but the con-
sideration of unusual stresses (for instance, Korteweg
stresses [11,35,36]) may lead to dynamic surface-tension-like
effects, a fact that may provide useful ways of further testing
our current immiscible results.
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